

TOP 30 Java Interview Coding Tasks with Winning Solutions
by Matthew Urban

Copyright © 2018 net-boss. All rights reserved.
Published by net-boss https://net-boss.org

July 2018: First Edition

No part of this book may be reproduced or transmitted in any form or by any
means, electronic, mechanical, photocopying, or otherwise without permis-
sion of the publisher.

Proofreader: Alex Solsbery
Illustrator: Matthew Urban
Cover designer: Karolina Kaiser
Composition: Karolina Kaiser (mobisfera.pl)

Oracle and Java are registered trademarks of Oracle Corporation in the U.S.
and other countries. All other trademarks are the property of their respec-
tive owners.

Although we have taken every care to ensure that the information contained
in this book is accurate, the publisher and author disclaim all responsibility
for errors or omissions. If you find a mistake in the text or the code, we would
be grateful if you would report it by visiting https://www.javafaq.io. By doing
so, you can help us improve next editions of this book.

ISBN 978-83-65477-10-1

ISBN 978-83-65477-10-1

9 7 8 8 3 6 5 4 7 7 1 0 1

https://net-boss.org
http://mobisfera.pl
https://www.javafaq.io

5

Top 30 Java Interview Coding Tasks With Winning Solutions

 Preface

This book contains the 30 most popular coding tasks used by Java devel-
opers during a job interview. There is no need to waste time to get to know
all possible coding tasks, which recruiters will not ask you to solve. Instead,
familiarize yourself with the most frequent ones used and prepare for your
job interview in the most effective way possible.

Matthew Urban
IT specialist, Senior Java developer

6

Matthew Urban

1. Reverse a text.

From my experience, reverse a text is a very popular coding task used during
job interview. Text manipulation methods are the ones mostly used by pro-
grammers. Although you do not need to implement them, it is desired to un-
derstand how such operations are performed under the hood. The low-level
details summed together have a significant impact on overall system per-
formance.

Solution

The String class represents a text value in Java which is built from an array
of characters. To implement a custom method to reverse a String you also
have to operate on an array of characters. There are many solutions to re-
verse a String, but the most optimal should not allocate additional memory
if there is no need. It is recommended to take an input char[] array, iterate
through it and switch the first element with the last, the second element
with the penultimate, etc. until half of the array is reached as presented in
Listing 1.1.

Listing 1.1 – Reverse a text algorithm.

public class StringUtils {
 public static String reverse(String input) {
 if (input == null) {
 return "";
 }
 char[] array = input.toCharArray();
 final int halfLength = array.length/2;
 int idx2;
 char clipboard;
 for (int idx1=0; idx1 < halfLength; idx1++) {
 idx2 = array.length - 1 - idx1;
 clipboard = array[idx1];
 array[idx1] = array[idx2];
 array[idx2] = clipboard;
 }
 return String.valueOf(array);
 }
}

7

Top 30 Java Interview Coding Tasks With Winning Solutions

Tests

The StringUtils.reverse() method is a good example of code which is
easy to test with unit tests. Listing 1.2 presents an example implementation
of such a unit test. In this case, a test is parametrized with two variables:
expected and input values. The data() method, is a factory method which
returns all combinations of input and expected data that need to be tested.
Remember, preparing test cases and a method body simultaneously (TDD)
results in high-quality code.

Listing 1.2 – Unit test used to verify the StringUtils.reverse() method.

@RunWith(Parameterized.class)
public class StringUtilsReverseTest {
 @Parameters(name = "({index}): reverse({1})={0}")
 public static Collection data() {
 return Arrays.asList(new Object[][]{
 {"", null},
 {"", ""},
 {"a", "a"},
 {"1234567890", "0987654321"},
 {"aBbA", "AbBa"}
 });
 }

 @Parameter(value = 0)
 public String expected;

 @Parameter(value = 1)
 public String input;

 @Test
 public void reverse() {
 assertEquals(expected, StringUtils.reverse(input));
 }
}

8

Matthew Urban

2. Design and implement LRU cache.

The main idea behind the LRU (Least Recently Used) cache is to “promote”
elements which are most frequently used. The most recently used elements
stay in cache, while least used entries are removed from the cache automat-
ically. Typically, LRU cache is implemented by using a doubly linked list and
hash map data structure. A combination of both structures allows fastest re-
trieval time (by hash map) and maintaining their access-order (by linked list).

Solution

Many developers start to write their own LRU cache from scratch. This is
not the best approach, because Java API already provides a ready to use
LinkedHashMap class, which is well-suited to build LRU cache. When the
recruiter sees that the developer reuses code, instead of writing the entire
solution from scratch, he can be sure that he has found an experienced pro-
grammer. The benefits of reusing code are: new code is created faster; the
cost of maintenance is lower and there is a less risk of unpredictable be-
havior of the program. Listing 2.1 presents an example implementation of
LRU cache, which reuses the LinkedHashMap class. The default ordering of
elements in LinkedHashMap class is insertion-order, but you can indicate in
the constructor that you prefer access-order. If you would like to limit the
number of elements in a cache (set max cache size) you need to override the
removeEldestEntry() method, which was designed for that purpose.

Listing 2.1 – Example implementation of LRU cache.

public class LRUCache<K,V> {
 private Map<K,V> map;

 public LRUCache(int cacheSize) {
 map = new LinkedHashMap<K,V>(16, 0.75f, true) {
 @Override
 protected boolean removeEldestEntry(Map.Entry eldest) {
 return size() > cacheSize;
 }
 };
 }

9

Top 30 Java Interview Coding Tasks With Winning Solutions

 public V get(K key) {
 return map.get(key);
 }

 public void set(K key, V value) {
 map.put(key, value);
 }
}

Tests

To implement a unit test which verifies the correctness of LRU cache evic-
tion policy, you need to be sure which element and why should be removed.
It is helpful to print the content of cache when tests are created. When you
are sure that your tests are correct, just remove the System.out.println()
invocations. Listing 2.2 presents a simple unit test which can be implement-
ed during the interview. Before such solution can be used in production en-
vironment, you need to extend the unit test with more sophisticated use
cases.

Listing 2.2 – Unit test used to verify the LRUCache class.

public class LRUCacheTest {
 LRUCache<Integer, Integer> cache = new LRUCache<>(4);

 @Test
 public void evictLeastRecentlyUsed() {
 cache.set(1, 11);
 cache.set(2, 22);
 cache.set(3, 33);
 cache.set(4, 44);
 cache.set(5, 55);

 assertNull(cache.get(1));
 assertEquals(22, cache.get(2).intValue());
 assertEquals(33, cache.get(3).intValue());
 assertEquals(44, cache.get(4).intValue());
 assertEquals(55, cache.get(5).intValue());

 cache.set(6, 66);

 assertNull(cache.get(1));
 assertNull(cache.get(2));
 assertEquals(33, cache.get(3).intValue());
 assertEquals(44, cache.get(4).intValue());
 assertEquals(55, cache.get(5).intValue());
 assertEquals(66, cache.get(6).intValue());

10

Matthew Urban

 cache.set(7, 77);

 assertNull(cache.get(1));
 assertNull(cache.get(2));
 assertNull(cache.get(3));
 assertEquals(44, cache.get(4).intValue());
 assertEquals(55, cache.get(5).intValue());
 assertEquals(66, cache.get(6).intValue());
 assertEquals(77, cache.get(7).intValue());

 cache.set(8, 88);

 assertNull(cache.get(1));
 assertNull(cache.get(2));
 assertNull(cache.get(3));
 assertNull(cache.get(4));
 assertEquals(55, cache.get(5).intValue());
 assertEquals(66, cache.get(6).intValue());
 assertEquals(77, cache.get(7).intValue());
 assertEquals(88, cache.get(8).intValue());
 }
}

11

Top 30 Java Interview Coding Tasks With Winning Solutions

3. Compute the distance between two
points in 3D space.

The distance between two points, also known as Euclidean distance is de-
fined by the following formula: sqrt((x-y)2). Depending on the number of
dimensions, the distance between two points is defined by different equa-
tions. For example, on a 2D surface where points have two coordinates, the
distance between them is: sqrt((x1-y1)2+(x2-y2)2). Your task is to prepare a
formula and implement a function which calculates the distance between
two points in 3D space.

Solution

The 3D surface differs from 2D in that it has one additional dimension: height.
The equation which measures distance between two points must only in-
clude the third coordinate: sqrt((x1-y1)2+(x2-y2)2+(x3-y3)2). Having such an
equation you need to write it down using Java language. Listing 3.1 presents
an example of such function. Please notice that Math class provides a ready
to use square root function.

Listing 3.1 – Distance between two points in 3D space.

public class Point {
 final double x;
 final double y;
 final double z;

 public Point(double x, double y, double z) {
 this.x = x;
 this.y = y;
 this.z = z;
 }

 double distance(Point p2) {
 double dx = this.x - p2.x;
 double dy = this.y - p2.y;
 double dz = this.z - p2.z;

12

Matthew Urban

 return Math.sqrt(dx*dx + dy*dy + dz*dz);
 }
}

Tests

To test if your function returns expected results, calculate the distance be-
tween points using the calculator, and then verify those results inside your
unit test.

Listing 3.2 – A unit test used to verify Point.distance() method.

public class PointDistanceTest {
 @Test
 public void distance() {
 Point p1 = new Point(8, 2, 6);
 Point p2 = new Point(8, 6, 3);
 assertTrue(Double.compare(5, p1.distance(p2)) == 0);
 assertTrue(Double.compare(5, p2.distance(p1)) == 0);
 }
}

13

Top 30 Java Interview Coding Tasks With Winning Solutions

4. Compare application version numbers.

An application version number is used to “tag” the released version of an ap-
plication. In most cases, it is a number created in the form of decimal num-
bers and dots. The numbers at the left side are more valuable than numbers
on the right side of the dot. For example:

•	 application version number 15.1.1 (and 15.1) is greater than 14.13.10
because 15 > 14,

•	 application version number 14.13.10 is greater than 14.10.55 because
13 > 10,

•	 application version number 14.10.55 is greater than 14.10.20 because
55 > 23.

Solution

The first idea which comes to your mind may be to remove the dots and
compare the numbers. Unfortunately, such comparator would return in-
correct results for versions such as 15.1 and 14.1.2 because 151 < 1412.
The correct solution must split the numbers and compare each from the
left to the right side. Listing 4.1 presents an example implementation of
VersionNumberComparator class.

Listing 4.1 – Compare application version numbers.

public class VersionNumberComparator implements Comparator<String> {
 @Override
 public int compare(String version1, String version2) {
 Integer[] array1 = Arrays.stream(version1.split("\\."))
 .map(Integer::parseInt)
 .toArray(Integer[]::new);
 Integer[] array2 = Arrays.stream(version2.split("\\."))
 .map(Integer::parseInt)
 .toArray(Integer[]::new);
 int length1 = array1.length;
 int length2 = array2.length;
 int idx = 0;
 while (idx < length1 || idx < length2) {
 if (idx < length1 && idx < length2) {
 if (array1[idx] < array2[idx]) {

14

Matthew Urban

 return -1;
 } else if (array1[idx] > array2[idx]) {
 return 1;
 }
 } else if (idx < length1) {
 if (array1[idx] != 0) {
 return 1;
 }
 } else if (idx < length2) {
 if (array2[idx] != 0) {
 return -1;
 }
 }
 idx++;
 }
 return 0;
 }
}

Tests

During the coding interview, in most cases you are under time-pressure. Do
not waste your time to prepare the best unit test in the world, instead focus
on most important test cases, like those which are presented in Listing 4.2.

Listing 4.2 – A unit test used to verify VersionNumberComparator function.

public class VersionNumberComparatorTest {
 Comparator<String> vnc = new VersionNumberComparator();

 @Test
 public void compareVersions() {
 assertTrue(vnc.compare("14", "14.0") == 0);
 assertTrue(vnc.compare("15", "14") > 0);
 assertTrue(vnc.compare("15.1", "14.13.10") > 0);
 assertTrue(vnc.compare("15.1", "15.1.0") == 0);
 assertTrue(vnc.compare("15.1.1", "14.13.10") > 0);
 assertTrue(vnc.compare("14.13", "14.10.55") > 0);
 assertTrue(vnc.compare("14.13.10", "14.10.55") > 0);
 assertTrue(vnc.compare("14.10.55", "14.10.20") > 0);
 assertTrue(vnc.compare("14.10.20", "14.10.20") == 0);
 }
}

15

Top 30 Java Interview Coding Tasks With Winning Solutions

5. Reverse a linked list.

First, let’s note the basic concept behind a linked list data structure. A linked
list is a data structure which contains a chain of nodes. Each node stores a
reference to the next node, which allows a linked list to grow dynamically
and save as many elements as needed. Listing 5.1 presents an example im-
plementation of a linked list data structure in Java.

Listing 5.1 – Example implementation of linked list data structure.

class LinkedList<T> {
 Node head;

 private class Node {
 final T value;
 Node next;

 Node(T value, Node next) {
 this.value = value;
 this.next = next;
 }
 }
}

The LinkedList class contains a head field which is the first node of the
linked list. Each node implemented by Node class, contains a next field,
which points to the next element in a sequence. In such way, the head el-
ement points to next element, the next element to another, and at the end,
the last element points to null value. Before you implement a reverse al-
gorithm for a linked list, you need to implement methods which allow you
to put elements inside and verify the presence and order of those values.
Listing 5.2 presents example implementations of add() and toString()
methods.

Listing 5.2 – Example implementation of add() and toString() methods.

class LinkedList<T> {
 Node head;

 public void add(T value) {
 Node node = new Node(value, null);
 if (head == null) {

16

Matthew Urban

 head = node;
 } else {
 Node last = head;
 while (last.next != null) {
 last = last.next;
 }
 last.next = node;
 }
 }

 @Override
 public String toString() {
 StringJoiner joiner = new StringJoiner(" -> ", "[", "]");
 Node last = head;
 while (last != null) {
 joiner.add(last.value.toString());
 last = last.next;
 }
 return joiner.toString();
 }

 private class Node {
 final T value;
 Node next;

 Node(T value, Node next) {
 this.value = value;
 this.next = next;
 }
 }
}

Next, you should verify if your first implementation of LinkedList class
works as expected. Listing 5.3 presents a simple client code, which verifies
the basic functionality of your own LinkedList class.

Listing 5.3 – Example usage of LinkedList class.

LinkedList<String> list = new LinkedList<>();
list.add("a1");
list.add("a2");
list.add("a3");
list.add("a4");
list.add("a5");

//prints [a1 -> a2 -> a3 -> a4 -> a5]
System.out.println(list);

17

Top 30 Java Interview Coding Tasks With Winning Solutions

Solution

There are many algorithms to reverse a linked list. The most popular, and
simultaneously most expected solution during a coding interview is the
simplest: the switch-three-references approach. The concept behind it is
to traverse through a linked list from head to the last element and move
elements by switching references with the help of temporary variables. List-
ing 5.4 presents a correct implementation of the switch-three-references
approach.

Listing 5.4 – Reverse a linked list algorithm.

class LinkedList<T> {
 Node head;

 //...

 public void reverse() {
 if (head == null) {
 return;
 }
 Node p1 = head;
 Node p2;
 while (p1.next != null) {
 p2 = p1.next;
 p1.next = p2.next;
 p2.next = head;
 head = p2;
 }
 }
}

Sometimes it can be difficult to find a correct solution during the interview,
especially when a developer is stressed. That is why it is recommended to
become familiar with the main idea beforehand. In each loop cycle, the next
element is moved to the beginning of the list by switching the references.
The procedure is repeated until the end of the list is reached. Listing 5.5
presents an example list after each loop cycle.

Listing 5.5 – Phases of reverse a linked list algorithm.

[a1 -> a2 -> a3 -> a4 -> a5]

(move the a2 to the beginning)
[a2 -> a1 -> a3 -> a4 -> a5]

18

Matthew Urban

(move the a3 to the beginning)
[a3 -> a2 -> a1 -> a4 -> a5]

(move the a4 to the beginning)
[a4 -> a3 -> a2 -> a1 -> a5]

(move the a5 to the beginning)
[a5 -> a4 -> a3 -> a2 -> a1]

To be able to switch elements, three references are used: p1, p2 and head.
Reference p1 is used to store the head node, which after the reverse be-
comes the last node. The p2 is used to traverse through a list and move next
elements in the sequence (second, third, etc..) from the middle to the begin-
ning of the list. The head reference is used to save a new first element of the
list for each loop cycle. For example, in the first loop cycle, the p2 variable is
used to point to the second element, meaning the element where p1.next
points to. Next, references are switched, so the first element points to the
third element, the second element points to the first, and the head becomes
the second element as presented in Figure 5.1.

next next next next null

p1 p2

head

SWITCH

next next next next null

p1 p2

head

Figure 5.1 – To reverse a linked list, three references are switched.

19

Top 30 Java Interview Coding Tasks With Winning Solutions

Tests

It is recommended to implement such a method using the TDD approach.
This helps you to create a correct solution step by step. Listing 5.6 presents
an example implementation of a unit test.

Listing 5.6 – Unit tests used to verify the reverse algorithm.

public class ReverseLinkedListTest {
 @Test
 public void reverseEmptyList() {
 LinkedList<String> list = new LinkedList<>();
 list.reverse();
 assertEquals("[]", list.toString());
 }

 @Test
 public void reverseOneElementList() {
 LinkedList<String> list = new LinkedList<>();
 list.add("a1");
 list.reverse();
 assertEquals("[a1]", list.toString());
 }

 @Test
 public void reverseManyElementsList() {
 LinkedList<String> list = new LinkedList<>();
 list.add("a1");
 list.add("a2");
 list.add("a3");
 list.add("a4");
 list.add("a5");
 assertEquals("[a1 -> a2 -> a3 -> a4 -> a5]", list.toString());
 list.reverse();
 assertEquals("[a5 -> a4 -> a3 -> a2 -> a1]", list.toString());
 }
}

	Preface
	Java SE
	Object Oriented Programming
	Fundamentals
	Class Design
	Exceptions
	Regex
	Input/Output
	Generics
	Functional Programming
	Lambda Expression
	Streams
	DateTime
	Modularity
	Concurrency
	JVM

	Collections
	Fundamentals
	Interfaces
	Implementations
	equals & hashCode

	Java EE
	Spring
	Core
	AOP
	Data Management
	Security
	Other

	Hibernate
	Design Patterns
	Databases
	Web Services
	Fundamentals
	SOAP
	REST

	Security
	Logging
	Testing
	Fundamentals
	Unit Testing
	JUnit

	Development Process
	Network
	Linux
	Bibliography
	Top_of_preface_xhtml
	Top_of_task1_xhtml
	Top_of_task2_xhtml
	Top_of_task3_xhtml
	Top_of_task4_xhtml
	Top_of_task5_xhtml

